Using “Risk Maps” to visually model & communicate risk

Martin Neil
Agena Ltd &
Risk Assessment and Decision Analysis Research Group,
Department of Computer Science, Queen Mary, University of London
London, UK

Web: www.agenarisk.com
Email: martin@agena.co.uk
Contents

• Problems with current approaches
• Risk Maps as Solution
• Risk Map Toolkit
• Risk Mapping for Enterprise Risk
• Risk Map Applications
• Final Remarks

All Examples shown using AgenaRisk software
Problems with current approaches
Risk Register

• “There are tight budget constraints”
• “The project overruns its schedule”
• “The company’s reputation is damaged externally by publicity about poor final system”
• “The customer refuses to pay”
• “The delivered system has many faults”
• “The requirements are especially complex”
• “The development staff are incompetent”
• “Key staff leave the project”
• “The staff are poorly motivated”
• “Generally cannot recruit good staff because of location”
• “There is a major terrorist attack”
Risk Heat Maps and Profiles

Risk = Likelihood \times Impact
Spreadsheets

<table>
<thead>
<tr>
<th>Xlower</th>
<th>Xupper</th>
<th>p(x)</th>
<th>midpoint</th>
<th>m*p(x)</th>
<th>p(x)*x^2</th>
<th>density</th>
</tr>
</thead>
<tbody>
<tr>
<td>-100</td>
<td>-1</td>
<td>1.39E-05</td>
<td>-50.5</td>
<td>-7.02E-04</td>
<td>3.55E-02</td>
<td>1.40E-07</td>
</tr>
<tr>
<td>-1</td>
<td>0</td>
<td>5.57E-05</td>
<td>-0.5</td>
<td>-2.79E-05</td>
<td>1.39E-05</td>
<td>5.57E-05</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0.001217</td>
<td>0.5</td>
<td>6.09E-04</td>
<td>3.04E-04</td>
<td>1.22E-03</td>
</tr>
<tr>
<td>1</td>
<td>1.5625</td>
<td>0.003352</td>
<td>1.28125</td>
<td>4.29E-03</td>
<td>5.50E-03</td>
<td>5.96E-03</td>
</tr>
<tr>
<td>1.5625</td>
<td>1.84375</td>
<td>0.006036</td>
<td>1.703125</td>
<td>1.03E-02</td>
<td>1.75E-02</td>
<td>2.15E-02</td>
</tr>
<tr>
<td>1.84375</td>
<td>1.984375</td>
<td>0.007557</td>
<td>1.914063</td>
<td>1.45E-02</td>
<td>2.77E-02</td>
<td>5.37E-02</td>
</tr>
<tr>
<td>1.984375</td>
<td>2.125</td>
<td>0.014305</td>
<td>2.054688</td>
<td>2.94E-02</td>
<td>6.04E-02</td>
<td>1.02E-01</td>
</tr>
<tr>
<td>2.125</td>
<td>2.25625</td>
<td>0.025505</td>
<td>2.195313</td>
<td>5.60E-02</td>
<td>1.23E-01</td>
<td>1.81E-01</td>
</tr>
<tr>
<td>2.25625</td>
<td>2.40625</td>
<td>0.041875</td>
<td>2.335938</td>
<td>9.78E-02</td>
<td>2.28E-01</td>
<td>2.98E-01</td>
</tr>
<tr>
<td>2.40625</td>
<td>2.546875</td>
<td>0.062771</td>
<td>2.476563</td>
<td>1.55E-01</td>
<td>3.85E-01</td>
<td>7.75E-01</td>
</tr>
<tr>
<td>2.546875</td>
<td>2.6875</td>
<td>0.085438</td>
<td>2.617188</td>
<td>2.24E-01</td>
<td>5.86E-01</td>
<td></td>
</tr>
<tr>
<td>2.6875</td>
<td>2.828125</td>
<td>0.10558</td>
<td>2.757813</td>
<td>2.91E-01</td>
<td>8.03E-01</td>
<td>7.51E-01</td>
</tr>
<tr>
<td>2.828125</td>
<td>2.96875</td>
<td>0.11851</td>
<td>2.898438</td>
<td>3.43E-01</td>
<td>9.96E-01</td>
<td>8.43E-01</td>
</tr>
<tr>
<td>2.96875</td>
<td>3.109375</td>
<td>0.12108</td>
<td>3.039063</td>
<td>3.68E-01</td>
<td>1.12E+00</td>
<td>8.61E-01</td>
</tr>
</tbody>
</table>

Cells G16, G17, G18, G19, G20 contain the formula =C16/ABS(A16-B16)
Expert Judgement - “I Assume”

• On the one hand….
 – Obvious risk of being wrong
 – Dangerous if unverified, checked or agreed
 – Political

• On the other hand….
 – Absolutely necessary
 – Unavoidable
 – We employ people for a reason!

• Model Risk: If you want to analyse risk you are going to have to take them….
How good are people at estimating risk?

- Evidence from psychology is worrying!
 - Availability of more recent cases
 - Emphasis on easier to remember dramatic events
 - Large single consequence often outweighs multiple small consequences

- Framing Problem: Answer you get depends how you ask the question!

“What is the chance of disease?”
Vs
“Given positive test result what is the chance of disease?”
Vs
“Chance of disease given test positive?”
If you cannot trust people can you trust the data?

• Statistical validity restricted to controlled experiments
• Data sets must represent homogeneous samples and correlations clear
 – High correlation between shoe size and IQ!
• Do you even have the data?
 – New business ventures?
 – Rare events?

......

The lure of objective irrationality
Combining Subjective and Objective information

• Casino 1- Honest Joe’s.
 – You visit a reputable casino at midnight in a good neighbourhood in a city you know well. When there you see various civic dignitaries (judges etc.). You decide to play a dice game where you win if the die comes up six.
 – What is the probability of a six?

• Casino 2 - Shady Sams.
 – More than a few drinks later the Casino closes forcing you to gamble elsewhere. You know the only place open is Shady Sam’s but you have never been. The doormen give you a hard time, there are prostitutes at the bar and hustlers all around. Yet you decide to play the same dice game.
 – What is the probability of a six?
Risk Maps as a Solution
Assessing Risk of Road Fatalities: Naïve Approach

Season

Colder months

Number of Fatalities

Fewer fatalities
Assessing Risk of Road Fatalities: Causal model

- Road Conditions
 - Average speed
 - Danger level
- Weather
- Season
- Number of journeys
- Number of Fatalities
Rev Thomas Bayes
Bayes’ Theorem

A: ‘Person has cancer’ \(p(A) = 0.1 \) \((\text{priors})\)

B: ‘Person is smoker’ \(p(B) = 0.5 \)

What is \(p(A \mid B) \)? \((\text{posterior})\)

\[p(B \mid A) = 0.8 \] \((\text{likelihood})\)

\[
p(A \mid B) = \frac{p(B \mid A)p(A)}{p(B)}
\]

So \(p(A \mid B) = 0.16 \)
Decomposing (Exposing) Risk Measure

- Standard Definition:

Risk = Impact x Probability

- Is this decomposition enough?

- Expose the assumptions!
 - What is the context driving the numbers?
 - Who’s risk is it?
 - Is it a risk to me?
 - Is it really a risk?
 - An indicator of a risk?
 - A mitigant…..?
Causal Framework for Risk

• Replace oversimplistic measure of risk with a causal approach

• Characterise risk by event chain involving:
 – The risk itself (at least)
 – One consequence event
 – One or more trigger events
 – One or more mitigant events

• Context “tells a story” and depends on perspective
Town Flood Example

Trigger
- Dam bursts upstream

Control
- Flood Barrier Fails

Risk Event
- Flood?

Mitigant
- Rapid Emergency Response

Consequence
- Loss of Life
Calculation of Town Flood Risk
Flood Example – Homeowners Perspective

- **Trigger**: Flood
- **Control**: Sandbags protection
- **Risk Event**: House floods?
- **Mitigant**: Adequate insurance
- **Consequence**: Financial Loss
Calculation of Home Flood Risk
4 Steps to define a risk map

1. Consider set of events from given perspective
2. For each event identify triggers and controls
3. For each event identify consequences and mitigants
4. Define probabilities for risk nodes
Connecting Risk Maps using Building Blocks

- Connect risk maps via input/output risk nodes
- Create complex time based or complex structural models
Benefits

• “A picture tells a thousand words”
• Explicitly quantifies uncertainty
• Connecting models “connects perspectives”
• Dynamic calculation of risk values
• Great for “what if” analysis
Risk Map Toolkit
Sophistication Spectrum

Accessible and Simple

“Mind” Mapping

Causal modelling

Simulation

Expert Systems

Dynamic Modelling

Expert-led and Difficult

Statistical Learning from data
Risk Map

- Nodes represent
 - variables
 - events
 - quantities
- Links represent relationships
 - relevance
 - causality
- Easy to support and understand
Measuring Scales

• Risk Node Types
 – Boolean (Yes/No, True/False)
 – Labelled (Red, Blue, Green)
 – Numeric (Integer, Continuous, Discrete)
 – Ranked (High, Medium, Low)
Discrete Probabilities

- Prior probabilities

<table>
<thead>
<tr>
<th></th>
<th>No</th>
<th>Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>0.1</td>
<td></td>
</tr>
</tbody>
</table>

- Conditional Probabilities

<table>
<thead>
<tr>
<th></th>
<th>No</th>
<th>Yes</th>
<th>No</th>
<th>Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dam bursts...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flood Barri...</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>No</td>
<td>1.0</td>
<td>0.8</td>
<td>0.9</td>
<td>0.0</td>
</tr>
<tr>
<td>Yes</td>
<td>0.0</td>
<td>0.2</td>
<td>0.1</td>
<td>1.0</td>
</tr>
</tbody>
</table>

- Result viewed as marginal probability distribution
Continuous Probabilities by Simulation

Model Statistical Distributions E.g. Normal

\[p(X) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \]
Simulation Model
Backwards Reasoning

- Estimate causes from effects!
- Useful way to model uncertain indicators
Statistical Learning
Risk Mapping for Enterprise Risk
Key RCSA* Questions

- What risks can occur?
- Can they occur in my process?
- How rare are they?
- How reliable are our controls?
- How good is our internal and external data?
- What is likely level of losses?
- What is worst case scenario?
- How can we improve?
- What should we improve?

* RCSA = Risk Control Self Assessment
Assessing Enterprise Risk

• Blend qualitative information with quantitative loss data
• COSO/CRSA style risk and business assessment
• Self-assessment data to predict process reliability in quantitative terms
• Measure and combine:
 – Process, Task reliability
 – Risks to reliability
 – Action plans
 – Issues
• Used to forecast VaR, ROI, capital charge, insurance levels.
Risk Map for RCSA
Risk Map Applications
“Risky” Applications

- Aircraft Mid-air collision
- Software defects
- Systems reliability
- Warranty return rates of electronic parts
- Operational risk in financial institutions
Aircraft Mid-Air Collision Prediction
Final Remarks

• Structured Method
 – Based on 300 year old proven Bayes’ theorem
 – Enabled by modern computer power & technology
 – Beyond current statistical & Monte Carlo techniques
 – Combines subjective judgements with data

• Risk Maps enable Visual Communication
 – Managing risk through pictures
 – Useable by risk novices as well as experts
 – Makes complex risk problems easily communicable

• AgenaRisk is Industrial Strength
 – Enables scalable, reusable & auditable risk models
 – Integrates easily with DBMS & Excel
 – Enables professional developers to build end-user applications
Next Steps

To build a risk map download and enjoy a FREE Evaluation copy of AgenaRisk visit:

www.agenarisk.com